Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Microb Pathog ; 173(Pt A): 105828, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2069488

ABSTRACT

The ongoing global pandemic of novel coronavirus pneumonia (COVID-19) caused by the SARS-CoV-2 has a significant impact on global health and economy system. In this context, there have been some landmark advances in vaccine development. Over 100 new coronavirus vaccine candidates have been approved for clinical trials, with ten WHO-approved vaccines including four inactivated virus vaccines, two mRNA vaccines, three recombinant viral vectored vaccines and one protein subunit vaccine on the "Emergency Use Listing". Although the SARS-CoV-2 has an internal proofreading mechanism, there have been a number of mutations emerged in the pandemic affecting its transmissibility, pathogenicity and immunogenicity. Of these, mutations in the spike (S) protein and the resultant mutant variants have posed new challenges for vaccine development and application. In this review article, we present an overview of vaccine development, the prevalence of new coronavirus variants and their impact on protective efficacy of existing vaccines and possible immunization strategies coping with the viral mutation and diversity.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2/genetics , COVID-19 Vaccines/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19/prevention & control , Vaccine Development , Antibodies, Viral , Viral Vaccines/genetics , Immunogenicity, Vaccine , Vaccines, Inactivated , Mutation
2.
J Med Virol ; 94(12): 5841-5849, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1999883

ABSTRACT

The spike trimer of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an effective target for inducing neutralizing antibodies by coronavirus disease 2019 (COVID-19) vaccines. However, the diversity of spike protein from emerging SASR-CoV-2 variants has become the major challenge for development of a universal vaccine. To investigate the immunogenicity of spike proteins from various circulating strains including wild type, Delta, and Omicron variants, we produced various natural spike trimers and designed three vaccination strategies, that is, individual, sequential, and bivalent regimens to assess autologous and heterogenous antibody responses in a mouse model. The results indicated that monovalent vaccine strategy with individual spike trimer could only induce binding and neutralizing antibodies against homologous viruses. However, sequential and bivalent immunization with Delta and Omicron spike trimers could induce significantly broader neutralizing antibody responses against heterogenous SARS-CoV-2. Interestingly, the spike trimer from Omicron variant showed superior immunogenicity in inducing antibody response against recently emerging XE variant. Taken together, our data supported the development of novel vaccination strategies or multivalent vaccine against emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Immunity, Humoral , Mice , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Combined
3.
Front Med (Lausanne) ; 9: 829273, 2022.
Article in English | MEDLINE | ID: covidwho-1715010

ABSTRACT

Detection of serum-specific SARS-CoV-2 antibody has become a complementary means for the identification of coronavirus disease 2019 (COVID-19). As we already know, the neutralizing antibody titers in patients with COVID-19 decrease during the course of time after convalescence, whereas the duration of antibody responses in the convalescent patients has not been defined clearly. In the current study, we collected 148 serum samples from 37 confirmed COVID-19 cases with different disease severities. The neutralizing antibodies (Nabs), IgM and IgG against COVID-19 were determined by CLIA Microparticle and microneutralization assay, respectively. The time duration of serum titers of SARS-CoV-2 antibodies were recorded. Our results indicate that IgG (94.44%) and Nabs (89.19%) can be detected at low levels within 190-266 days of disease onset. The findings can advance knowledge regarding the antibody detection results for COVID-19 patients and provide a method for evaluating the immune response after vaccination.

4.
Front Immunol ; 12: 693775, 2021.
Article in English | MEDLINE | ID: covidwho-1394758

ABSTRACT

Small number of SARS-CoV-2 epidemic lineages did not efficiently exhibit a neutralization profile, while single amino acid mutation in the spike protein has not been confirmed in altering viral antigenicity resulting in immune escape. To identify crucial mutations in spike protein that escape humoral immune response, we evaluated the cross-neutralization of convalescent plasmas and RBD-specific monoclonal antibodies (mAbs) against various spike protein-based pseudoviruses. Three of 24 SARS-CoV-2 pseudoviruses containing different mutations in spike protein, including D614G, A475V, and E484Q, consistently showed an altered sensitivity to neutralization by convalescent plasmas. A475V and E484Q mutants are highly resistant to neutralization by mAb B38 and 2-4, suggesting that some crucial mutations in spike protein might evolve SARS-CoV-2 variants capable of escaping humoral immune response.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/immunology , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Substitution/genetics , Amino Acid Substitution/immunology , Antibodies, Neutralizing/immunology , Convalescence , Humans , Immune Evasion , Immunity, Humoral , Neutralization Tests , Protein Binding
5.
Food Chem Toxicol ; 153: 112286, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1385569

ABSTRACT

Higher selenium status has been shown to improve the clinical outcome of infections caused by a range of evolutionally diverse viruses, including SARS-CoV-2. However, the impact of SARS-CoV-2 on host-cell selenoproteins remains elusive. The present study investigated the influence of SARS-CoV-2 on expression of selenoprotein mRNAs in Vero cells. SARS-CoV-2 triggered an inflammatory response as evidenced by increased IL-6 expression. Of the 25 selenoproteins, SARS-CoV-2 significantly suppressed mRNA expression of ferroptosis-associated GPX4, DNA synthesis-related TXNRD3 and endoplasmic reticulum-resident SELENOF, SELENOK, SELENOM and SELENOS. Computational analysis has predicted an antisense interaction between SARS-CoV-2 and TXNRD3 mRNA, which is translated with high efficiency in the lung. Here, we confirmed the predicted SARS-CoV-2/TXNRD3 antisense interaction in vitro using DNA oligonucleotides, providing a plausible mechanism for the observed mRNA knockdown. Inhibition of TXNRD decreases DNA synthesis which is thereby likely to increase the ribonucleotide pool for RNA synthesis and, accordingly, RNA virus production. The present findings provide evidence for a direct inhibitory effect of SARS-CoV-2 replication on the expression of a specific set of selenoprotein mRNAs, which merits further investigation in the light of established evidence for correlations between dietary selenium status and the outcome of SARS-CoV-2 infection.


Subject(s)
DNA/biosynthesis , Endoplasmic Reticulum Stress/physiology , Ferroptosis/physiology , RNA, Messenger/metabolism , SARS-CoV-2/physiology , Selenoproteins/metabolism , Animals , Chlorocebus aethiops , Gene Expression Regulation/physiology , RNA, Messenger/genetics , Selenoproteins/genetics , Vero Cells
7.
Int J Infect Dis ; 117: 372-377, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1225254

ABSTRACT

BACKGROUND: COVID-19 has spread worldwide and become a pandemic. We report the epidemiological and clinical characteristics of cluster infections. METHODS: Data of clustered cases were retrieved from the public health emergency monitoring information system of China. We analyzed the incubation period, generation gap, secondary attack rate, and viral load in various grouped cases. RESULTS: A total of 60 COVID-19 infection clusters including 226 patients and 19 asymptomatic cases involving four generations were analyzed. With the increase of transmission generations, secondary attack rate decreased (P<0.001) and severity alleviated (P = 0.008). The median incubation period and intergenerational interval were 9 and 6 days, respectively. The secondary attack rate was 7.1% in the index cases, 5.0% in the first generation, 1.0% in the second generation, and 4.7% overall. Severe cases were seen more in the index (13, 65%) and first generation (7, 35%) ones, who had a significantly higher viral load than the mild and moderate ones. CONCLUSIONS: With the increase of transmission generation, secondary infection rate and severity decreased. Severe patients had a higher virus load. Patients in the incubation period and asymptomatic carriers were potential infection sources who might play an important role in transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , China/epidemiology , Humans , Incidence , Pandemics
8.
Natl Sci Rev ; 7(10): 1527-1539, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1114859

ABSTRACT

In this population-based study, we identified 307 confirmed COVID-19 cases from massive surveillance, including 129 551 individuals screened at fever clinics or returning from Hubei and 3710 close contacts of confirmed COVID-19 patients. Among them, 17 patients were asymptomatic at initial clinical assessment. These asymptomatic patients on admission accounted for a small proportion of all patients (5.54%) with relatively weak transmissibility, and the detection rate was 0.35 per 100 close contacts. Moreover, the dynamics of symptoms of the 307 patients showed that the interval from symptom remission to the final negativity of viral nucleic acid was 5.0 days (interquartile range 2.0 to 11.0 days), with 14 patients (4.56%) having re-detectable viral RNA after discharge. Overall, our findings suggested asymptomatic carriers and presymptomatic patients only accounted for a small proportion of COVID-19 patients. Also, the asymptomatic phase during recovery from COVID-19 implied that negativity in viral RNA is necessary as a de-isolation criterion and follow-up is recommended.

9.
BMC Infect Dis ; 20(1): 930, 2020 Dec 07.
Article in English | MEDLINE | ID: covidwho-962806

ABSTRACT

BACKGROUND: COVID-19 is a newly emerging disease caused by a novel coronavirus (SARS-CoV-2), which spread globally in early 2020. Asymptomatic carriers of the virus contribute to the propagation of this disease, and the existence of asymptomatic infection has caused widespread fear and concern in the control of this pandemic. METHODS: In this study, we investigated the origin and transmission route of SARS-CoV-2 in Anhui's two clusters, analyzed the role and infectiousness of asymptomatic patients in disease transmission, and characterized the complete spike gene sequences in the Anhui strains. RESULTS: We conducted an epidemiological investigation of two clusters caused by asymptomatic infections sequenced the spike gene of viruses isolated from 12 patients. All cases of the two clusters we investigated had clear contact histories, both from Wuhan, Hubei province. The viruses isolated from two outbreaks in Anhui were found to show a genetically close link to the virus from Wuhan. In addition, new single nucleotide variations were discovered in the spike gene. CONCLUSIONS: Both clusters may have resulted from close contact and droplet-spreading and asymptomatic infections were identified as the initial cause. We also analyzed the infectiousness of asymptomatic cases and the challenges to the current epidemic to provided information for the development of control strategies.


Subject(s)
Asymptomatic Infections/epidemiology , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19/transmission , China/epidemiology , Contact Tracing , Disease Hotspot , Disease Outbreaks , Female , Humans , Male , Molecular Epidemiology , Pandemics , Phylogeny , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA
10.
Int J Infect Dis ; 99: 325-327, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-597916

ABSTRACT

Few studies have focused on the transmission efficiency of asymptomatic carriers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Our follow-up study was performed on 147 asymptomatic carriers in Anhui Province. Of these, 50.0% were male, 50.3% were older than 40 years, 43.8% were farmers, and 68.7% were from the north of Anhui Province. 16 of the 147 asymptomatic carriers developed symptoms in the following 14 days of isolated observation, and were subsequently diagnosed as confirmed cases. The possible latent infection period was found to range from 1-5 days before onset, with a median time of 2 days. The second attack rate for the 16 confirmed cases who had transferred from being asymptomatic carriers was 9.7% (23/236 close contacts), while for the 131 asymptomatic carriers the rate was 2.6% (24/914 close contacts), showing a significant difference in second attack rate between the two groups (p<0.001). Our study indicated that COVID-19 cases are contagious during the incubation period, and that close contact screening should be extended to include the incubation period. Our results also showed that the transmission efficiency for asymptomatic carriers was lower than that for confirmed case.


Subject(s)
Betacoronavirus/physiology , Communicable Diseases, Emerging/transmission , Coronavirus Infections/transmission , Pandemics/prevention & control , Pneumonia, Viral/transmission , Adult , Asymptomatic Diseases , COVID-19 , China/epidemiology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Female , Follow-Up Studies , Humans , Incidence , Male , Mass Screening , Middle Aged , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL